If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+22X-3600=0
a = 1; b = 22; c = -3600;
Δ = b2-4ac
Δ = 222-4·1·(-3600)
Δ = 14884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14884}=122$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-122}{2*1}=\frac{-144}{2} =-72 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+122}{2*1}=\frac{100}{2} =50 $
| 0.12(y-8)+0.06y=0.14y-60 | | 9x+8=0.5x+16.5 | | 15=1/2(x+10) | | -5+2h=19-4h | | 412x+4=13x-5 | | 28=-1/2(4x-24) | | 7x3-5=2x3+10 | | 12x+44=11x-1=8x | | 4x+2(-3x)=4 | | 3x-4x+2=3 | | -7/3x-10/8=1/8 | | 3x+8=-x+1 | | 8x-80=-8x | | 2x-5=-2x-7 | | 4x-12x+34=-13x+22 | | 10x-3=-5x+5 | | 2=-20-5x | | -6=x/6-3 | | 3z-1/7=41/7 | | -9x-4+10x=-3 | | -6x-3=-10x+9 | | 7=19x-1 | | -9x-3x=60 | | 8x-16=8x+3 | | 9-29t+4)=1 | | 8j+5=16 | | -4(2p+4)+3(8p-7)=59 | | -11/2=-1/2-5/2x | | 12u-9u-5u=-5 | | 12u-9u-5u=-15 | | m=80+30= | | 2a=(27-3a)*5 |